
Time Series Subsequence Similarity Search
under Dynamic Time Warping Distance

on the Intel Many-core Accelerators∗

Aleksandr Movchan, Mikhail Zymbler

South Ural State University (Chelyabinsk, Russian Federation)

SISAP 2015, 8th International Conference
on Similarity Search and Applications

Glasgow, Scotland, UK, October 12-14, 2015

∗ This work was financially supported by the Ministry of education and science of Russia
(“Research and development on priority directions of scientific-technological complex of
Russia for 2014-2020” Federal Program, contract No. 14.574.21.0035).

Time Series in Real Life

2 / 26

Formal Definitions

T

Q

Tim
timei i+m-1

Time series T
• T = t1, t2, . . . , tN where ti ∈ R
• N is a length of the sequence

Query Q
• Q is a time series to be found in T
• n is a length of the query, n� N

Subsequence Ti m

• Ti m = ti , ti+1, . . . , ti+m−1

• 1 ≤ i ≤ N and i + m ≤ N

3 / 26

Best-match Search

T

Q

Tim
timei i+m-1

Find Ti n ∈ T
• ∀m, 1 ≤ m ≤ N − n,D(Ti n,Q) < D(Tm n,Q)

D is a similarity measure.

4 / 26

DTW Similarity Measure

0 4 7 8

1 3 5 5

4 2 2 4

4 6 5 3

time

B

1
2

4
5

ti
m
e

A

1

1

4

2

3

2

1

0

3210

a b

c ?

x

y

ii-1

j

j-1

A

B

5 / 26

Intel Xeon Phi Architecture

61 core, 244 threads, ≈1.2 TFLOPS, 512-bit SIMD 6 / 26

Intel Xeon Phi Programming Model

Intel Xeon Phi supports the same parallel programming tools and
models as x86 CPU

Execution modes

Intel Xeon Intel Xeon Phi

ResultResult

Offload Native Symmetric

Intel Xeon Intel Xeon Phi

Result

code
data

data

data

data

Intel Xeon Intel Xeon Phi

Result

code

Execution on the
CPU, offloading
computationally
intensive part of work
to the coprocessor.

Independent execution
on the coprocessor.

Execution on the
coprocessor as MPI
process.

7 / 26

UCR-DTW Serial Algorithm

LB_Kim(Ti n, Q) < bsf

pruned

LB_Keogh(Ti n, Q) < bsf

LB_KeoghEC(Ti n, Q) < bsf

dist = DTW(Ti n, Q)

yes

no

no

no

yes

yes

bsf = min(bsf, dist) result = argmin DTW(x, Q)
 x ∈ [result, Ti n]

Proposed in

Rakthanmanon T., et al. Searching and Mining Trillions of Time Series
Subsequences under Dynamic Time Warping // ACM SIGKDD, 2012.
P. 262–270.

8 / 26

UCR-DTW Serial Algorithm

Features

Dynamic Time Warping as similarity measure

Exact search

Z-normalization
x ′i = xi−µ

σ , i ∈ N,
µ – mean, σ – standard deviation

Possible to search in large time series

High level of data parallelism

One of the fastest

9 / 26

DTW Restrictions

9 / 26

DTW Bounds

LBKim =
√

(t0 − q0)2 + (tn−1 − qn−1)2

Complexity: O(1).
LBKeogh

Sequences U and L are constructed for query Q
ui = max(qi−R , qi+R), li = min(qi−R , qi+R),

LBKeogh(Q,C) =

√√√√√ n∑
i=1

(ci − ui)

2 if ci > ui
(ci − li)

2 if ci < li
0 otherwise

Complexity: O(n).
LBKeoghEC

Sequences U and L are constructed for subsequence C
ui = max(ci−R , ci+R), li = min(ci−R , ci+R),

LBKeogh(Q,C) =

√√√√√ n∑
i=1

(qi − ui)

2 if qi > ui
(qi − li)

2 if qi < li
0 otherwise

Complexity: O(n).
9 / 26

Parallelization Roadmap

I Parallel Algorithm for CPU
• Parallelize UCR-DTW using OpenMP
• Run parallel application on Xeon Phi only using native mode

II Parallel Algorithm for CPU and Coprocessor
• Parallel algorithm, combining CPU and Xeon Phi

I coprocessor computes DTW
I CPU prunes dissimilar subsequences and sends rest subsequences to the

Xeon Phi

• Run parallel application on CPU and on coprocessor using offload mode

10 / 26

Splitting Time Series Among Threads

n-1

0

1

n-1

2 H-1

t1 tN

T is partitioned into H equal-length segments

H = d N

P · S
e · P

where
P is the number of OpenMP-threads,
S is a max length of segment (parameter of the algorithm, e.g. S = 106),
n� S < N
k-th segment, 0 ≤ k ≤ H − 1, is a subsequence Tsl

s =

{
1 , k = 0
k · bNH c − n + 2 , else

l =

 b
N
H c , k = 0
bNH c+ n − 1 + (N mod H) , k = H − 1
bNH c+ n − 1 , else

where n is length of the query 11 / 26

Parallel Algorithm for CPU

UCR-DTW

CPU
core

res0 resN-1

min resi

CPU
core

result

...CPU
core

...res1

UCR-DTW UCR-DTW UCR-DTW

n - 1

12 / 26

Dynamic vs Static Distribution

Thread 1 Thread 1

Thread 2

Thread 3

Thread 2

Thread 3

Static Dynamic

Execution time

Execution time

Execution time

Execution time

Execution time

Execution time

Total execution time Total execution time

13 / 26

Performance of the Parallel Algorithm for CPU

LB Kim O(1)
LB Keogh O(n)
LB KeoghEC O(n)
DTW O(n2)

Time of loading data

from disk into memory

of Intel Xeon Phi:

≈ 300 s

Data set: RANDOM WALK, 108 datapoints

0

200

400

600

800

1000

1200

500 2000 4000 6000 10000

E
xe

cu
tio

n
tim

e,
 s

ec

Query length

Serial

Parallel, CPU

Native, Xeon Phi

14 / 26

Parallel Algorithm for CPU and Coprocessor

UCR-DTW*

CPU
core

resk

min resi

result

...CPU
core

CPU
core

queue

CPU
core

Xeon
Phi

core

... Xeon
Phi

core

Xeon
Phi

core

DTW

res0 resPHI_N-2

min resi

... resPHI_N-1

CPU Intel Xeon Phi

...
UCR-DTW* UCR-DTW*

DTW DTW DTWβ

...

resN

15 / 26

Experiments: Hardware

Specifications Processor Coprocessor

Model Intel Xeon X5680 Intel Xeon Phi SE10X

Cores 6 61

Frequency, GHz 3.33 1.1

Threads per core 2 4

Peak performance, TFLOPS 0.371 1.076

Memory, Gb 24 8

Cache, Mb 12 30.5

16 / 26

Experiments: Data Sets

Time series Category Length

PURE RANDOM synthetic 106

RANDOM WALK synthetic 108

ECG∗ real 2 · 107

∗ Rakthanmanon T., et al. Searching and Mining Trillions of Time Series Subsequences
under Dynamic Time Warping // ACM SIGKDD, 2012. P. 262–270.

17 / 26

Performance – PURE RANDOM

0

200

400

600

800

1000

1000 1500 2000 3000

E
xe

cu
tio

n
tim

e,
 s

ec

Query length

Serial
Parallel, CPU

Native, Xeon Phi
Parallel, CPU+Xeon Phi

18 / 26

Performance – RANDOM WALK

0

200

400

600

800

1000

1200

500 2000 4000 6000 10000

E
xe

cu
tio

n
tim

e,
 s

ec

Query length

Serial

Parallel, CPU

Native, Xeon Phi

Parallel, CPU+Xeon Phi

19 / 26

Performance – ECG

0

1000

2000

3000

4000

5000

6000

1000 1500 2000 3000

E
xe

cu
tio

n
tim

e,
 s

ec

Query length

Serial
Parallel, CPU

Native, Xeon Phi
Parallel, CPU+Xeon Phi

20 / 26

Impact of Queue Size on the Speedup

Queue size = C × h ×W
where
C — the number of available cores of the coprocessor,
h — hyperthreading factor of the coprocessor,
W — the number of candidates to be processed by a coprocessor’s thread.

21 / 26

Impact of Queue Size on the Speedup

0

100

200

300

400

500

600

120 1000 2400 4800 9600

E
xe

cu
tio

n
tim

e,
 s

ec

Queue size

Query length: 1000
2000
3000

(a) PURE RANDOM

0

100

200

300

400

500

600

700

120 1000 2400 4800 9600

E
xe

cu
tio

n
tim

e,
 s

ec

Queue size

Query length: 1000
2000
4000
6000

10000

(b) RANDOM WALK

0

200

400

600

800

1000

1200

1400

120 1000 2400 4800 9600

E
xe

cu
tio

n
tim

e,
 s

ec

Queue size

Query length: 1000
1500
2000

(c) ECG 22 / 26

Utilization of Coprocessor

40

50

60

70

80

90

100

500 2000 3000 4000 6000 10000

U
til

iz
at

io
n,

 %

Query length

Pure Random
ECG

Random Walk

23 / 26

Comparison with Analogues

100

101

102

103

104

105

20000 40000 80000 160000

E
xe

cu
tio

n
tim

e
(lo

g
sc

al
e)

Query length

Intel Xeon X5680 + Intel Xeon Phi SE10X (Random Walk), 1.44 TFLOPS
Intel Xeon X5680 + Intel Xeon Phi SE10X (ECG), 1.44 TFLOPS

Intel Xeon X5680 + Intel Xeon Phi SE10X (Sart et al. data set), 1.44 TFLOPS
NVIDIA Tesla C1060, 77.8 GFLOPS
Xilinx Virtex-5 LX-330, 65 GFLOPS

24 / 26

Comparison with Analogues

100

101

102

103

104

105

20000 40000 80000 160000

E
xe

cu
tio

n
tim

e
(lo

g
sc

al
e)

Query length

Intel Xeon X5680 + Intel Xeon Phi SE10X (Random Walk), 1.44 TFLOPS
Intel Xeon X5680 + Intel Xeon Phi SE10X (ECG), 1.44 TFLOPS

Intel Xeon X5680 + Intel Xeon Phi SE10X (Sart et al. data set), 1.44 TFLOPS
NVIDIA Tesla K40 (hypothetical results), 1.43 TFLOPS

Xilinx Virtex-7 980XT (hypothetical results), 0.99TFLOPS

4
6
%

4
8
%

4
5
%

4
5
%

9
9
%

9
7
%

9
5
%

9
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
5
%

25 / 26

Conclusion

A parallel algorithm for best-match time series subsequence search
under DTW distance on the Intel Many Integrated Core has been
presented.

The algorithm combines capabilities of CPU and the Intel Xeon Phi
• the coprocessor is exploited only for DTW computations;
• CPU performs lower bounding, prepares subsequences for the

coprocessor;
• CPU supports a queue of candidate subsequences and the coprocessor

computes DTW for each candidate.

Experiments have shown that the algorithm does not concede to
analogous algorithms for GPU and FPGA on performance.

Future work: extend the algorithm for the following cases:
• implement modified DTW, based on the wavelet transform;
• several the Intel Xeon Phi coprocessors;
• cluster computing system with nodes equipped with a the Intel Xeon

Phi coprocessor(s).

26 / 26

How to Compute DTW

time time

Euclid DTW

DTW (X ,Y) = d(N,N),

d(i , j) = |xi − yj |+ min

d(i − 1, j)
d(i , j − 1)
d(i − 1, j − 1),

d(0, 0) = 0; d(i , 0) = d(0, j) =∞; i = 1, 2, . . . ,N; j = 1, 2, . . . ,N.

26 / 26

How to Compute DTW

0 4 7 8

time
1

2

4
5

ti
m
e

1

1

4

2

a b

c d

d = cost + min(a, b, c)
cost = |x - y|

x

y

26 / 26

How to Compute DTW

0 4 7 8

1 3 5 5

time
1

2

4
5

ti
m
e

1

1

4

2

a b

c d

d = cost + min(a, b, c)
cost = |x - y|

x

y

26 / 26

How to Compute DTW

0 4 7 8

1 3 5 5

4 2 2 4

time
1

2

4
5

ti
m
e

1

1

4

2

a b

c d

d = cost + min(a, b, c)
cost = |x - y|

x

y

26 / 26

How to Compute DTW

0 4 7 8

1 3 5 5

4 2 2 4

4 6 5 3

time
1

2

4
5

ti
m
e

1

1

4

2

a b

c d

d = cost + min(a, b, c)
cost = |x - y|

x

y

26 / 26

Serial Algorithm

[no Tin]Get Tin

dist = DTW(Tin, Q)bsf = min(bsf, dist)

else

[pruned]

else

LB_Kim(Tin, Q)

[lb_kim ≥ bsf] [lb_keogh ≥ bsf] [lb_keogh_ec ≥ bsf]

else

Lower Bound Cascade Pruning

else

pruned

non-pruned

LB_Keogh(Tin, Q) LB_KeoghEC(Tin, Q)
else

i = i + 1

26 / 26

Simple Algorithm

Open file
Swap Buf_1
and Buf_2

Read data
in Buf_2

result = min_dist(result, res1, ..., resCPU_THREADS)

Output
result

Close file

[Buf_2 is empty]

else

...

Read data
in Buf_1

UCR-DTW(segment)

Process Segments

segment := segments[k]

[k > H]

else

Process
Segments

Process
Segments

Process
Segments

k := k + 1

k := 0

26 / 26

Näıve Algorithm

CPU Intel Xeon Phi

Receive
α portion of Buf_1

...

phi_result = min_dist
(res1, ..., resPHI_THREADS)

Send phi_result

Send
α portion of Buf_1

Receive phi_result

UCR-DTW UCR-DTW

Open file
Swap Buf_1
and Buf_2

UCR-DTW
Read data
in Buf_2

result = min_dist(result, res1, ..., resCPU_THREADS)

Output
result

Close file

[Buf_2 is
empty]else

...

[EOF]else

UCR-DTW UCR-DTW

Read data
in Buf_1

26 / 26

Advanced Algorithm

CPU Intel Xeon Phi

Receive
candidates

...

phi_result = min_dist
(res1, ..., resPHI_THREADS)

Send phi_result

Wait for
candidates

Receive
phi_result

Open file
Swap Buf_1
and Buf_2

result = min_dist(result, res1, ..., resCPU_THREADS)

Output
resultClose file

[Buf_2 is
empty]else

Read data
in Buf_1

[no candidates and
all threads are finished]

Send candidates

else
DTW DTW

Send Buf_1 Receive Buf

Read data
in Buf_2

...
Process

Segments
by UCR-DTW*

Process
Segments

by UCR-DTW*

Process
Segments

by UCR-DTW*

Process Segments by UCR-DTW*

k := 0

UCR-DTW*(segment)segment := segments[k]
[k > H]

else
k := k + 1

26 / 26

Before vectorization of DTW

26 / 26

After vectorization of DTW

26 / 26

Impact of vectorization of DTW

0

100

200

300

400

500

500 2000 4000 6000 10000

E
xe

cu
ti

o
n
 t

im
e
,

se
c

Query length

With vectorization of DTW
Without vectorization of DTW

26 / 26

Classification of Contours

26 / 26

MedMining Project

Data mining of physiological studies of professional athletes

26 / 26

	Introduction
	Formal Definitions
	Time series, subsequence, query
	Best-match subsequence search
	Dynamic Time Warping

	Accelerating best-match search on the Intel MIC coprocessors
	Intel Many Integrated Core architecture and programming model
	Serial Algorithm
	Parallelization roadmap
	Simple parallel algorithm
	Parallel Algorithm for CPU and Coprocessor

	Experimental evaluation
	Hardware and data sets
	Performance

	Conclusion
	Appendix
	Dynamic Time Warping
	UML diagrams and pseudo-code
	Applications of best-match subsequence search

