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Abstract. The paper introduces an approach to partitioning of very
large graphs by means of parallel relational database management sys-
tem (DBMS) named PargreSQL. Very large graph and its intermediate
data that does not fit into main memory are represented as relational
tables and processed by parallel DBMS. Multilevel partitioning is used.
Parallel DBMS carries out coarsening to reduce graph size. Then an ini-
tial partitioning is performed by some third-party main-memory tool.
After that parallel DBMS is used again to provide uncoarsening. The
PargreSQL’s architecture is described in brief. The PargreSQL is devel-
oped by authors by means of embedding parallelism into PostgreSQL
open-source DBMS. Experimental results are presented and show that
our approach works with a very good time and speedup at an acceptable
quality loss.

1 Introduction

Nowadays graph mining plays an important role in modeling complicated struc-
tures, such as chemical compounds, protein structures, biological and social net-
works, the Web and XML documents, circuits, etc. Being the one of the topical
problems of graph mining, graph partitioning is defined as follows [9]. Given a
graph G = (N,E), where N is a set of weighted nodes and E is a set of weighted
edges, and a positive integer p, find p subsets N1, N2, . . . , Np of N such that

– ∪pi=1Ni = N and Ni ∩Nj = ∅ for i 6= j,
– W (i) ≈ W/p, i = 1, 2, . . . , p, where W (i) and W are the sums of the node

weights in Ni and N , respectively;
– the cut size, i.e. the sum of weights of edges crossing between subsets is

minimized.

The usual way to do partitioning is through several recursive steps of bisec-
tion. So our approach was aimed at this particular kind of partitioning problem.

A very large graph, comprising of billions vertices and/or edges, is the most
challenging case of partitioning because the graph being partitioned and all the
intermediate data does not fit into main memory.

In this paper we introduce an approach to partitioning of very large graphs
by means of parallel relational database management system (DBMS). The rest
of the paper is organized as follows. Section 2 briefly discusses the related work.



Section 3 provides a short intro to PargreSQL parrallel DBMS that we use for the
graph partitioning. Section 4 presents our approach. The results of experiments
are shown in section 5. Section 6 contains concluding remarks and directions for
future work.

2 Related Work

A significant amount of work has been done in the area of graph-based data
mining, including graph partitioning problem [1].

The classical algorithm based on a neighborhood-search technique for deter-
mining the optimal graph partitioning is proposed in [16]. Multilevel approach to
graph partitioning is suggested in [14]. There are many sophisticated serial and
parallel graph partitioning algorithms have been developed [9]. One of the first
parallel graph partitioning algorithms based upon multilevel approach was pro-
posed in [15]. An approach to graph partitioning based upon genetic alorighms
investigated in [17]. In [7] authors suggested graph partitioning algorithm with-
out multilevel approach.

A parallel graph partitioner for shared-memory multicore architectures is
discussed in [28]. Parallel disk-based algorithm for graph partitioning is pre-
sented in [29]. In [26] distributed graph partitioning algorithm is suggested.
Cloud computing-based graph partitioning is described in [6].

There are software packages implementing various graph partitioning algo-
rithms, e.g. Chaco [12], METIS and ParMETIS [13], KaFFPa [25], etc.

In [3] ParallelGDB, a system to handle massive graphs in a shared-nothing
parallel system is described. Pregel [20] is a Google’s distributed programming
framework, focused on providing users with a natural API for programming
graph algorithms.

Existing graph data mining algorithms typically face difficulties with respect
to scalability (storing a graph and its intermediate data in main memory). Min-
ing by means of relational DBMS and SQL allows to overcome main memory
restrictions. This approach supposes bringing mining algorithms to data stored
in relational database instead of moving stored data to algorithms of third-party
tools. Using relational DBMS for mining we have got all its services “for free”:
effective buffer management, indexing, retrieval, etc. However it demands uneasy
“mapping” of graph mining algorithms onto SQL with cumbersome source code.

In recent years a number of graph mining algorithms have been implemented
using relational DBMS. In [22] a scalable, SQL-based approach to graph mining
(specifically, interesting substructure discovery) is presented. A framework for
quasi clique detection based upon relational DBMS is described in [27]. Frequent
SQL-based subgraph mining algorithms proposed in [5, 10]. Database approach
to handle cycles and overlaps in a graph is investigated in [2, 4]. We also have
to mention non-DBMS oriented but disk-based system for computing efficiently
on very large graphs described in [18].

Despite the benefits of using a DBMS, it still could be incapable of effectively
processing very large graphs. Our contribution is applying a parallel DBMS to



graph partitioning (what was done for the first time, to the best of our knowl-
edge).

3 PargreSQL parallel DBMS

Currently, open-source PostgreSQL DBMS [24] is a reliable alternative for com-
mercial DBMSes. There are many research projects devoted to extension and im-
provement of PostgreSQL. PargreSQL DBMS is a version of PostgreSQL adapted
for parallel processing. PargreSQL utilizes the idea of fragmented parallelism1 [8]
in cluster systems (see fig. 1). This form of parallelism supposes horizontal frag-
mentation of the relational tables and their distribution among the disks of the
cluster.
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Fig. 1. Fragmented parallelism

The way of the table fragmentation is defined by a fragmentation function,
which for each record of the table returns the ID of the processor node where
this record should be placed.

A query is executed in parallel on all processor nodes as a set of parallel
agents. Each agent processes its own fragment and generates a partial query
result. The partial results are merged into the resulting table.

The PargreSQL architecture (see fig. 2) implies modifications to the source
code of existing PostgreSQL’s subsystems as well as implementation of new
subsystems to provide parallel processing.

Modified PostgreSQL’s engine instance is installed on every node of a cluster
system. The par Storage subsystem provides fragmentation and replication of ta-
bles among the disks of the cluster. The par Balancer subsystem is responsible
for load balancing of the engine instances. The par Exchange subsystem pro-
vides the EXCHANGE operator [11, 19], which is in charge of data transmission

1 Also known as partitioned parallelism, but that term is not used in the paper to
avoid possible confusion with graph partitioning.
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Fig. 2. PargreSQL architecture

among PostgreSQL’s engine instances during the query execution and encapsu-
lates all the parallel work. The par Parallelizer subsystem inserts EXCHANGEs
into appropriate places of the query execution plan made by PostgreSQL’s en-
gine instance. The par libpq provides an API that is transparent to PostgreSQL
applications.

4 Applying PargreSQL to graph partitioning

This section describes an approach to bisecting of very large graphs with Post-
greSQL parallel DBMS. Bisection of a graph is a basic case of graph partitioning
problem (p = 2, partitioning into two sets). Multi-way partitioning is performed
by recursively applying bisection.

Graph partitioning with PargreSQL is depicted in fig. 3. We use the multilevel
partitioning scheme [14], which includes three steps.

On the first step, coarsening, we reduce the input graph to the size that ex-
isting graph partitioning tools could deal with. A relational table (list of edges)
that represent the graph is split into horizontal fragments and PargreSQL exe-
cutes SQL-queries which reduce its size. During the coarsening step we collapse
the heaviest edges of the graph, reducing excessive vertices and edges and ag-
gregating their weight. Coarsening can be repeated multiple times to get smaller
graphs. This step is implemented in PargreSQL by means of representing the
input graph as a relational table and quering this table using SQL.

On the second step, initial partitioning, we export the graph from the database
and feed it to a third-party graph partitioning utility (Chaco [12]) which performs
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Fig. 3. Graph partitioning scheme

the initial partitioning using one of the well-known algorithms (Kernighan-Lin,
inertial, spectral, etc.). The result of the initial partitioning is imported into the
database as a relational table containing the list of the graph’s vertices with
their partitions assigned.

Table 1. Data structure for graph partitioning

Relational table Description

GRAPH(A, B, W) The original fine graph
A, B: edge’s ends, W: weight

MATCH(A, B) The matching of the fine graph
A, B: edge’s ends

COARSE GRAPH(A, B, W) The coarse graph
A, B: edge’s ends, W: weight

COARSE PARTITIONS(A, P) The partitions of the coarse graph
A: vertex, P: partition

PARTITIONS(A, P, G) The partitions of the fine graph
A: vertex, P: partition, G: gain

On the final step, uncoarsening, we refine the coarse results using another
sequence of SQL queries. This step is repeated as many times as the coarsening
was performed. During this step we first map coarse results on the larger graph,



and then apply a local optimization to improve the results. PargreSQL calculates
a table of two columns: vertex and its partition.

Since we apply a relational DBMS, our algorithms suppose that the data is
stored in relational tables (see tab. 1). These tables are uniformly distributed
among cluster nodes by means of ψ(t) = b t.A×n|E| c fragmentation function, where

n is the number of nodes in the cluster and t.A is used as the fragmentation
attribute. Every instance of the PargreSQL’s engine processes its own set of
fragments of these tables.

Since our approach does not implement the initial partitioning itself, we will
discuss further only the coarsening and uncoarsening steps.

4.1 Coarsening

We divided the coarsening problem into two subproblems: find a matching
and collapse the matching (see fig. 4).
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Fig. 4. An example of coarsening

During the find substep we search for the heaviest matching (independent
edge set) in the graph. Since we use a simple greedy algorithm for that, the
matching could turn out not to be actually the heaviest. This matching is stored
into a database table as a list of edges for later use.

The collapse substep implements the removal of all the edges found on the
previous substep. The edges in question get collapsed into vertices (see fig. 5).

4.2 Uncoarsening

The uncoarsening step is also implemented inside PargreSQL as a series of re-
lational operations. The implementation consists of three substeps: propagate
the partitions, calculate the gains and refine the gains (see fig. 6).



select least(newA, newB) as A, greatest(newA, newB) as B, sum(W) as W

from (

select

coalesce(match2.A, GRAPH.A) as newA,

coalesce(MATCH.A, GRAPH.B) as newB,

GRAPH.W

from

GRAPH, left join MATCH on GRAPH.B=MATCH.B

left join MATCH as match2 on GRAPH.A=match2.B)

where newA<>newB group by A, B

Fig. 5. The collapse substep implementation
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Fig. 6. An example of uncoarsening

The idea of the propagate step is to map coarse partitions onto the finer
version of the graph. This is the opposite of the collapse substep of the coars-
ening process. The matching saved earlier gets used here to uncollapse the edges
and mark their ends as belonging to the corresponding partitions (see fig. 7).

select a, p from COARSE_PARTS

union

select match.b, part.p

from MATCH as match, COARSE_PARTS as part

where match.a = part.a

Fig. 7. The propagate substep implementation

Right after the partition propagation we could end up with a nonoptimal
solution. So we need to know, which vertices should go to the opposite partition.
This is calculated for each vertex as the gain, which is the difference between
the total weight of the edges connecting the vertex with ones from the other



partition and the total weight of the edges connecting the vertex with ones from
the same partition.

The gain is calculated as

gain(v) = ext(v)− int(v),

where
ext(v) =

∑
(v,u)∈E,P (v) 6=P (u)

w(v, u),

int(v) =
∑

(v,u)∈E,P (v)=P (u)

w(v, u).

Basically, the gain means how much better the overall solution would be if
we excluded this vertex v from its current partition P (v). In case gain(v) > 0
we would want to move v to the opposite partition. The gain calculation imple-
mented in PL/pgSQL as shown in fig. 8.

select PARTITIONS.A, PARTITIONS.P, sum(subgains.Gain) as Gain

from

PARTITIONS left join (

select GRAPH.A, GRAPH.B,

case when ap.P = bp.P then -GRAPH.W

else GRAPH.W end as Gain

from

GRAPH left join PARTITIONS as ap on GRAPH.a = ap.A

left join PARTITIONS as bp on GRAPH.b = bp.A

) as subgains

on PARTITIONS.A = subgains.A or PARTITIONS.A = subgains.B

group by PARTITIONS.A, PARTITIONS.P

Fig. 8. The gain calculation

During the refine substep we switch back and forth between the partitions,
each time picking a vertex which has the largest positive gain and moving it to
the opposite partition. This repeats until we cannot find such vertices any more.
This method is based on the heuristic proposed in [16]. Its implementation in
PL/pgSQL is shown in fig. 9.

5 Experiments

We have conducted a series of experiments using SKIF-Aurora supercomputer of
South Ural State University [21]. We tried to partition a street network graph2

2 Luxemburg street map from http://www.cc.gatech.edu/dimacs10/archive/

streets.shtml



select * from PARTITIONS

where

P = current and

G = (

select max(G)

from PARTITIONS

where P = current)

limit 1

into V

(a) Vertex picking

update PARTITIONS

set G = G + W * (case when P = V.P then 2

else -2 end)

from (

select case when A = V.A then B else A end,

W from GRAPH

where B = V.A or A = V.A) as neighbors

where neighbors.A = PARTITIONS.A;

update PARTITIONS

set G = -G, P = 1 - P

where A = V.A;

(b) Vertex moving

Fig. 9. Refining

of 105 vertices and we got an embarassingly parallel implementation where every
fragment of the graph’s database represenation gets processed independently of
the other fragments. Since the problem has the complexity of O(n3), this kind
of ”trick” gives us the superlinear speedup that you can see on fig. 10, but at a
price of reduced accuracy of the results.
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Fig. 10. Execution time with PargreSQL

Relative execution time of coarsening and uncoarsening did not show any
dependency on configuration (see fig. 11).

We have investigated exactly how much worse the results would get as we
increased the number of computer nodes in the system. The statistics on the
quality of partitioning is shown in fig. 12.
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Fig. 12. The quality of the partitioning

6 Conclusions

The paper introduces an approach to partitioning of very large graphs, compris-
ing of billions of vertices and/or edges. Most of the existing serial and parallel
algorithms suppose that the graph being partitioned and all the intermediate
data fit into main memory, so they cannot be applied directly for very large
graphs.

Our approach assumes using PargreSQL parallel relational DBMS. A very
large graph is represented as a relational table (list of edges). PargreSQL DBMS
carries out the coarsening of the graph. The coarsened graph and the inter-
mediate data generated during the process fit into main memory, so its initial
partitioning could be performed by some third-party tool (e.g. Chaco). In the
end PargreSQL performs the uncoarsening of the coarse partitions.

PargreSQL is implemented on the basis of PostgreSQL open-source DBMS.
PargreSQL utilizes the idea of fragmented parallelism and implies modifications
in the source code of the existing PostgreSQL’s subsystems as well as implemen-
tation of new subsystems to provide parallel processing.

Because of using a DBMS our approach will work even in cases when tradi-
tional tools may fail due to memory limits. Parallel query processing provides
us with a very good time and speedup of graph partitioning at an acceptable
quality loss.



In the future we would like to explore applying PargreSQL to other problems
connected with mining very large graphs from different subject domains and try
some more sophisticated partitioning schemes, not only the bisection.
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